A Method for Animating Children’s Drawings of the Human Figure
Harrison Jesse Smith, Qingyuan Zheng, Yifei Li, Somya Jain, Jessica K. Hodgins
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT)
One of the challenges in the field of haptics is to provide meaningful and realistic sensations to users. While most real world tactile sensations are composed of multiple dimensions, most commercial product only include vibration as it is the most cost effective solution. To improve on this, we introduce VPS (Vibration, Pressure, Shear) display, a multi-dimensional tactile array that increases information transfer by combining Vibration, Pressure, and Shear similar to how RGB LED combines red, blue, and green to create new colors. We characterize the device performance and dynamics for each tactile dimension in terms of its force and displacement profiles, and evaluate information transfer of the VPS display through a stimulus identification task. Our results indicate that the information transfer through a single taxel increases from 0.56 bits to 2.15 bits when pressure and shear are added to vibrations with a slight decrease in identification accuracy. We also explored the pleasantness and continuity of VPS and the study results reveal that tactile strokes in shear mode alone are rated highest on perceived pleasantness and continuity.
Harrison Jesse Smith, Qingyuan Zheng, Yifei Li, Somya Jain, Jessica K. Hodgins
Yunbo Zhang, Deepak Gopinath, Yuting Ye, Jessica Hodgins, Greg Turk, Jungdam Won
Simran Arora, Patrick Lewis, Angela Fan, Jacob Kahn, Christopher Ré