What Makes Training Multi-modal Classification Networks Hard?

Conference on Computer Vision and Pattern Recognition (CVPR)

Abstract

Consider end-to-end training of a multi-modal vs. a unimodal network on a task with multiple input modalities: the multi-modal network receives more information, so it should match or outperform its uni-modal counterpart. In our experiments, however, we observe the opposite: the best uni-modal network often outperforms the multi-modal network. This observation is consistent across different combinations of modalities and on different tasks and benchmarks for video classification.

This paper identifies two main causes for this performance drop: first, multi-modal networks are often prone to overfitting due to their increased capacity. Second, different modalities overfit and generalize at different rates, so training them jointly with a single optimization strategy is sub-optimal. We address these two problems with a technique we call Gradient-Blending, which computes an optimal blending of modalities based on their overfitting behaviors. We demonstrate that Gradient Blending outperforms widely-used baselines for avoiding overfitting and achieves state-of-the-art accuracy on various tasks including human action recognition, ego-centric action recognition, and acoustic event detection.

Latest Publications

A Practical Stereo Depth System for Smart Glasses

Jialiang Wang, Daniel Scharstein, Akash Bapat, Kevin Blackburn-Matzen Matthew Yu, Jonathan Lehman, Suhib Alsisan, Yanghan Wang, Sam Tsai, Jan-Michael Frahm, Zijian He, Peter Vajda, Michael Cohen, Matt Uyttendaele

CVPR - 2023

Presto: A Decade of SQL Analytics at Meta

Yutian James Sun, Tim Meehan, Rebecca Schlussel, Wenlei Xie, Masha Basmanova, Orri Erling, Andrii Rosa, Shixuan Fan, Rongrong Zhong, Arun Thirupathi, Nikhil Collooru, Ke Wang, Sameer Agarwal, Arjun Gupta, Dionysios Logothetis, Kostas Xirogiannopoulos, Bin Fan, Amit Dutta, Varun Gajjala, Rohit Jain, Ajay Palakuzhy, Prithvi Pandian, Sergey Pershin, Abhisek Saikia, Pranjal Shankhdhar, Neerad Somanchi, Swapnil Tailor, Jialiang Tan, Sreeni Viswanadha, Zac Wen, Deepak Majeti, Aditi Pandit, Biswapesh Chattopadhyay

SIGMOD - 2023