Popularity Prediction for Social Media over Arbitrary Time Horizons
Daniel Haimovich, Dima Karamshuk, Thomas Leeper, Evgeniy Riabenko, Milan Vojnovic
International Symposium on Code Generation and Optimization (CGO)
Just-In-Time (JIT) compilation is often employed in Virtual Machines (VMs) to translate their virtual-machine languages into real-machine code. This approach not only brings portability, but it also enables aggressive compiler optimizations based on runtime behavior observed via profiling. The downside of JIT compilation, compared to Ahead-Of-Time native compilation, is that the profiling and compilation overheads are incurred during execution. To mitigate these overheads, previous work have proposed sharing either profile data or final JIT compiled code across VM executions. Unfortunately, these techniques have drawbacks, including steady-state performance degradation and difficulty of use. To address these issues, this paper presents the Jump-Start mechanism implemented inside the HipHop Virtual Machine (HHVM). Jump-Start is a practical approach to share VM profile data at a large scale, being used to power one of the largest websites in the world. In this paper, we argue for HHVM’s Jump-Start approach, describe it in detail, and present steady-state optimizations built on top of it. Running the Facebook website, we demonstrate that Jump-Start effectively solves the warmup problem in HHVM, reducing the server capacity loss during warmup by 54.9%, while also improving steady-state performance by 5.4%.
Daniel Haimovich, Dima Karamshuk, Thomas Leeper, Evgeniy Riabenko, Milan Vojnovic
Liqi Yan, Qifan Wang, Yiming Cu, Fuli Feng, Xiaojun Quan, Xiangyu Zhang, Dongfang Liu
Barlas Oğuz, Xilun Chen, Vladimir Karpukhin, Stan Peshterliev, Dmytro Okhonko, Michael Schlichtkrull, Sonal Gupta, Yashar Mehdad, Wen-tau Yih