Learning ASR Pathways: A Sparse Multilingual ASR Model

IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)


Neural network pruning compresses automatic speech recognition (ASR) models effectively. However, in multilingual ASR, language agnostic pruning may lead to severe performance drops on some languages because language-agnostic pruning masks may not fit all languages and discard important language-specific parameters. In this work, we present ASR pathways, a sparse multilingual ASR model that activates language-specific sub-networks (“pathways”), such that the parameters for each language are learned explicitly. With the overlapping sub-networks, the shared parameters can also enable knowledge transfer for lower-resource languages via joint multilingual training. We propose a novel algorithm to learn ASR pathways, and evaluate the proposed method on 4 languages with a streaming RNN-T model. Our proposed ASR pathways outperform both dense models and a language-agnostically pruned model, and provide better performance on low-resource languages compared to the monolingual sparse models.

Featured Publications