A Method for Animating Children’s Drawings of the Human Figure
Harrison Jesse Smith, Qingyuan Zheng, Yifei Li, Somya Jain, Jessica K. Hodgins
ACM Special Interest Group on Management of Data (SIGMOD/PODS)
Database benchmarks are an important tool for database researchers and practitioners that ease the process of making informed comparisons between different database hardware, software and configurations. Large scale web services such as social networks are a major and growing database application area, but currently there are few benchmarks that accurately model web service workloads.
In this paper we present a new synthetic benchmark called LinkBench. LinkBench is based on traces from production databases that store “social graph” data at Facebook, a major social network. We characterize the data and query workload in many dimensions, and use the insights gained to construct a realistic synthetic benchmark. LinkBench provides a realistic and challenging test for persistent storage of social and web service data, filling a gap in the available tools for researchers, developers and administrators.
Harrison Jesse Smith, Qingyuan Zheng, Yifei Li, Somya Jain, Jessica K. Hodgins
Yunbo Zhang, Deepak Gopinath, Yuting Ye, Jessica Hodgins, Greg Turk, Jungdam Won
Simran Arora, Patrick Lewis, Angela Fan, Jacob Kahn, Christopher Ré