Popularity Prediction for Social Media over Arbitrary Time Horizons
Daniel Haimovich, Dima Karamshuk, Thomas Leeper, Evgeniy Riabenko, Milan Vojnovic
arXiv
Forecasting COVID-19 poses unique challenges due to the novelty of the disease, its unknown characteristics, and substantial but varying interventions to reduce its spread. To improve the quality and robustness of forecasts, we propose a new method which aims to disentangle region-specific factors – such as demographics, enacted policies, and mobility – from disease-inherent factors that influence its spread. For this purpose, we combine recurrent neural networks with a vector autoregressive model and train the joint model with a specific regularization scheme that increases the coupling between regions. This approach is akin to using Granger causality as a relational inductive bias and allows us to train high-resolution models by borrowing statistical strength across regions. In our experiments, we observe that our method achieves strong performance in predicting the spread of COVID-19 when compared to state-of-the-art forecasts.
Daniel Haimovich, Dima Karamshuk, Thomas Leeper, Evgeniy Riabenko, Milan Vojnovic
Liqi Yan, Qifan Wang, Yiming Cu, Fuli Feng, Xiaojun Quan, Xiangyu Zhang, Dongfang Liu
Barlas Oğuz, Kushal Lakhotia, Anchit Gupta, Patrick Lewis, Vladimir Karpukhin, Aleksandra Piktus, Xilun Chen, Sebastian Riedel, Wen-tau Yih, Sonal Gupta, Yashar Mehdad