Online certification of preference-based fairness for personalized recommender systems

Conference on Artificial Intelligence (AAAI)

Abstract

Recommender systems are facing scrutiny because of their growing impact on the opportunities we have access to. Current audits for fairness are limited to coarse-grained parity assessments at the level of sensitive groups. We propose to audit for envy-freeness, a more granular criterion aligned with individual preferences: every user should prefer their recommendations to those of other users. Since auditing for envy requires to estimate the preferences of users beyond their existing recommendations, we cast the audit as a new pure exploration problem in multi-armed bandits. We propose a sample-efficient algorithm with theoretical guarantees that it does not deteriorate user experience. We also study the tradeoffs achieved on real-world recommendation datasets.

Outstanding Paper Award

Latest Publications

Sustainable AI: Environmental Implications, Challenges and Opportunities

Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani, Kiwan Maeng, Gloria Chang, Fiona Aga Behram, James Huang, Charles Bai, Michael Gschwind, Anurag Gupta, Myle Ott, Anastasia Melnikov, Salvatore Candido, David Brooks, Geeta Chauhan, Benjamin Lee, Hsien-Hsin S. Lee, Bugra Akyildiz, Max Balandat, Joe Spisak, Ravi Jain, Mike Rabbat, Kim Hazelwood

MLSys - 2022