Pseudo-labeling for Massively Multilingual Speech Recognition

IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)

Abstract

Semi-supervised learning through pseudo-labeling has become a staple of state-of-the-art monolingual speech recognition systems. In this work, we extend pseudo-labeling to massively multilingual speech recognition with 60 languages. We propose a simple pseudo-labeling recipe that works well even with low-resource languages: train a supervised multilingual model, fine-tune it with semi-supervised learning on a target language, generate pseudo-labels for that language, and train a final model using pseudo-labels for all languages, either from scratch or by fine-tuning. Experiments on the labeled Common Voice and unlabeled VoxPopuli datasets show that our recipe can yield a model with better performance for many languages that also transfers well to LibriSpeech.

Latest Publications

Presto: A Decade of SQL Analytics at Meta

Yutian James Sun, Tim Meehan, Rebecca Schlussel, Wenlei Xie, Masha Basmanova, Orri Erling, Andrii Rosa, Shixuan Fan, Rongrong Zhong, Arun Thirupathi, Nikhil Collooru, Ke Wang, Sameer Agarwal, Arjun Gupta, Dionysios Logothetis, Kostas Xirogiannopoulos, Bin Fan, Amit Dutta, Varun Gajjala, Rohit Jain, Ajay Palakuzhy, Prithvi Pandian, Sergey Pershin, Abhisek Saikia, Pranjal Shankhdhar, Neerad Somanchi, Swapnil Tailor, Jialiang Tan, Sreeni Viswanadha, Zac Wen, Deepak Majeti, Aditi Pandit, Biswapesh Chattopadhyay

SIGMOD - 2023