Weighted Pointer: Error-aware Gaze-based Interaction through Fallback Modalities
Ludwig Sidenmark, Mark Parent, Chi-Hao Wu, Joannes Chan, Michael Glueck, Daniel Wigdor, Tovi Grossman, Marcello Giordano
Conference on Knowledge Discovery and Data Mining (KDD)
In this paper, we present Que2Search, a deployed query and product understanding system for search. Que2Search leverages multi-task and multi-modal learning approaches to train query and product representations. We achieve over 5% absolute offline relevance improvement and over 4% online engagement gain over state-ofthe-art Facebook product understanding system by combining the latest multilingual natural language understanding architectures like XLM and XLM-R with multi-modal fusion techniques. In this paper, we describe how we deploy XLM-based search query understanding model that runs <1.5ms @P99 on CPU at Facebook scale, which has been a significant challenge in the industry. We also describe what model optimizations worked (and what did not) based on numerous offline and online A/B experiments. We deploy Que2Search to Facebook Marketplace Search and share our deployment experience to production and tuning tricks to achieve higher efficiency in online A/B experiments. Que2Search has demonstrated gains in production applications and operates at Facebook scale.
Ludwig Sidenmark, Mark Parent, Chi-Hao Wu, Joannes Chan, Michael Glueck, Daniel Wigdor, Tovi Grossman, Marcello Giordano
Simon Vandenhende, Dhruv Mahajan, Filip Radenovic, Deepti Ghadiyaram
Xiaoyu Xiang, Yapeng Tian, Vijay Rengaranjan, Lucas D. Young, Bo Zhu, Rakesh Ranjan