Avatars Grow Legs: Generating Smooth Human Motion from Sparse Tracking Inputs with Diffusion Model
Yuming Du, Robin Kips, Albert Pumarola, Sebastian Starke, Ali Thabet, Artsiom Sanakoyeu
Conference on Automated Knowledge Base Construction (AKBC)
Learning good representations on multi-relational graphs is essential to knowledge base completion (KBC). In this paper, we propose a new self-supervised training objective for multi-relational graph representation learning, via simply incorporating relation prediction into the commonly used 1vsAll objective. The new training objective contains not only terms for predicting the subject and object of a given triple, but also a term for predicting the relation type. We analyse how this new objective impacts multi-relational learning in KBC: experiments on a variety of datasets and models show that relation prediction can significantly improve entity ranking, the most widely used evaluation task for KBC, yielding a 6.1% increase in MRR and 9.9% increase in Hits@1 on FB15k-237 as well as a 3.1% increase in MRR and 3.4% in Hits@1 on Aristo-v4. Moreover, we observe that the proposed objective is especially effective on highly multi-relational datasets, i.e. datasets with a large number of predicates, and generates better representations when larger embedding sizes are used.
Yuming Du, Robin Kips, Albert Pumarola, Sebastian Starke, Ali Thabet, Artsiom Sanakoyeu
Bilge Acun, Benjamin Lee, Fiodar Kazhamiaka, Kiwan Maeng, Manoj Chakkaravarthy, Udit Gupta, David Brooks, Carole-Jean Wu
Ilkan Esiyok, Pascal Berrang, Katriel Cohn-Gordon, Robert Künnemann