A Method for Animating Children’s Drawings of the Human Figure
Harrison Jesse Smith, Qingyuan Zheng, Yifei Li, Somya Jain, Jessica K. Hodgins
IEEE Custom Integrated Circuits Conference (IEEE CICC)
Augmented Reality / Virtual Reality (AR/VR) devices aim to connect people in the Metaverse with photorealistic virtual avatars, referred to as “Codec Avatars”. Delivering a high visual performance for Codec Avatar workloads, however, is a challenging task for mobile SoCs as AR/VR devices have limited power and form factor constraints. On-device, local, near-sensor processing provides the best system-level energy-efficiency and enables strong security and privacy features in the long run. In this work, we present a custom-built, prototype small-scale mobile SoC that achieves energy-efficient performance for running eye gaze extraction of the Codec Avatar model. The test-chip, fabricated in 7nm technology node, features a Neural Network (NN) accelerator consisting of a 1024 Multiply-Accumulate (MAC) array, 2MB on-chip SRAM, and a 32bit RISC-V CPU. The featured test-chip is integrated on a prototype mobile VR headset to run the Codec Avatar application. This work aims to show the full stack design considerations of system-level integration, hardware-aware model customization, and circuit-level acceleration to meet the challenging mobile AR/VR SoC specifications for a Codec Avatar demonstration. By re-architecting the Convolutional NN (CNN) based eye gaze extraction model and tailoring it for the hardware, the entire model fits on the chip to mitigate system-level energy and latency cost of off-chip memory accesses. By efficiently accelerating the convolution operation at the circuit-level, the presented prototype SoC achieves 30 frames per second performance with low-power consumption at low form factors. With the full-stack design considerations presented in this work, the featured test-chip consumes 22.7mW power to run inference on the entire CNN model in 16.5ms from input to output for a single sensor image. As a result, the test-chip achieves 375 μJ/frame/eye energy-efficiency within a within a 2.56 mm2 silicon area.
Harrison Jesse Smith, Qingyuan Zheng, Yifei Li, Somya Jain, Jessica K. Hodgins
Yunbo Zhang, Deepak Gopinath, Yuting Ye, Jessica Hodgins, Greg Turk, Jungdam Won
Simran Arora, Patrick Lewis, Angela Fan, Jacob Kahn, Christopher Ré