The Costs of Overambitious Seeding of Social Products

International Conference on Complex Networks and their Applications


Product-adoption scenarios are often theoretically modeled as “influence-maximization” (IM) problems, where people influence one another to adopt and the goal is to find a limited set of people to “seed” so as to maximize long-term adoption. In many IM models, if there is no budgetary limit on seeding, the optimal approach involves seeding everybody immediately. Here, we argue that this approach can lead to suboptimal outcomes for “social products” that allow people to communicate with one another. We simulate a simplified model of social-product usage where people begin using the product at low rates and then ramp their usage up or down depending upon whether they are satisfied with their experiences. We show that overambitious seeding can result in people adopting in suboptimal contexts, where their friends are not active often enough to produce satisfying experiences. We demonstrate that gradual seeding strategies can do substantially better in these regimes.

Latest Publications

Sustainable AI: Environmental Implications, Challenges and Opportunities

Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani, Kiwan Maeng, Gloria Chang, Fiona Aga Behram, James Huang, Charles Bai, Michael Gschwind, Anurag Gupta, Myle Ott, Anastasia Melnikov, Salvatore Candido, David Brooks, Geeta Chauhan, Benjamin Lee, Hsien-Hsin S. Lee, Bugra Akyildiz, Max Balandat, Joe Spisak, Ravi Jain, Mike Rabbat, Kim Hazelwood

MLSys - 2022