A Method for Animating Children’s Drawings of the Human Figure
Harrison Jesse Smith, Qingyuan Zheng, Yifei Li, Somya Jain, Jessica K. Hodgins
The ACM Web Conference (TheWebConf)
Budget-management systems are one of the key components of modern auction markets. Internet advertising platforms typically offer advertisers the possibility to pace the rate at which their budget is depleted, through budget-pacing mechanisms. We focus on multiplicative pacing mechanisms in an online setting in which a bidder is repeatedly confronted with a series of advertising opportunities. After collecting bids, each item is then allocated through a single-item, second-price auction. If there were no budgetary constraints, bidding truthfully would be an optimal choice for the advertiser. However, since their budget is limited, the advertiser may want to shade their bid downwards in order to preserve their budget for future opportunities, and to spread expenditures evenly over time. The literature on online pacing problems mostly focuses on the setting in which the bidder optimizes an additive separable objective, such as the total click-through rate or the revenue of the allocation. In many settings, however, bidders may also care about other objectives which oftentimes are non-separable. We study the frequent case in which the utility of a (proxy) bidder depends on the rewards obtained from items they are allocated, and on the distance of the realized distribution of impressions from a target distribution. We introduce a novel regularizer which can describe those distributional preferences, while keeping the problem tractable. We show that this regularizer can be integrated into an existing online mirror descent scheme with minor modifications, attaining the optimal order of sub-linear regret compared to the optimal allocation in hindsight when inputs are drawn independently, from an unknown distribution. Moreover, we show that our approach can easily be incorporated in standard existing pacing systems that are not usually built for this objective. The effectiveness of our algorithm in internet advertising applications is confirmed by numerical experiments on real-world data.
Harrison Jesse Smith, Qingyuan Zheng, Yifei Li, Somya Jain, Jessica K. Hodgins
Yunbo Zhang, Deepak Gopinath, Yuting Ye, Jessica Hodgins, Greg Turk, Jungdam Won
Simran Arora, Patrick Lewis, Angela Fan, Jacob Kahn, Christopher Ré