A Method for Animating Children’s Drawings of the Human Figure
Harrison Jesse Smith, Qingyuan Zheng, Yifei Li, Somya Jain, Jessica K. Hodgins
IEEE World Haptics Conference
In this paper we define language and definitions to define the renderable set of dynamics that a general kinesthetic haptic display can render to a human operator. This is accomplished in three steps. First, we present a model that applies to every kinesthetic haptic display. Then, we define the Z-Qualities of a haptic display: characteristics that describe the display’s stability, sensitivity to instrumentation error, speed of changing the rendered dynamics, and accuracy of the rendered and desired dynamics. Finally, we define the Renderable Mass-Damping-Stiffness Spaces of a haptic display: the set of mass-damper-spring impedances that the display can render that satisfy specified Z-Quality constraints. We highlight existing key results for various Z-Qualities, and provide illustrative examples of renderable mass-damping-stiffness spaces for popular specified Z-Qualities ‘Passiva’ and ‘Stabila.’ This work aims to provide a framework for determining if a given haptic display can render dynamics with certain qualities, and we hope is particularly useful for psychophysical and scientific studies where accurate rendered dynamics to the human are essential.
Harrison Jesse Smith, Qingyuan Zheng, Yifei Li, Somya Jain, Jessica K. Hodgins
Simran Arora, Patrick Lewis, Angela Fan, Jacob Kahn, Christopher Ré
Zach Miller, Olusiji Medaiyese, Madhavan Ravi, Alex Beatty, Fred Lin