Scalable Constrained Bayesian Optimization

International Conference on Artificial Intelligence and Statistics (AISTATS)

Abstract

The global optimization of a high-dimensional black-box function under black-box constraints is a pervasive task in machine learning, control, and engineering. These problems are challenging since the feasible set is typically non-convex and hard to find, in addition to the curses of dimensionality and the heterogeneity of the underlying functions. In particular, these characteristics dramatically impact the performance of Bayesian optimization methods, that otherwise have become the de facto standard for sample-efficient optimization in unconstrained settings, leaving practitioners with evolutionary strategies or heuristics. We propose the scalable constrained Bayesian optimization (SCBO) algorithm that overcomes the above challenges and pushes to applicability of Bayesian optimization far beyond the state-of-the-art. A comprehensive experimental evaluation demonstrates that SCBO achieves excellent results on a variety of benchmarks. To this end, we propose two new control problems that we expect to be of independent value for the scientific community.

SUPPLEMENTARY MATERIAL

Featured Publications